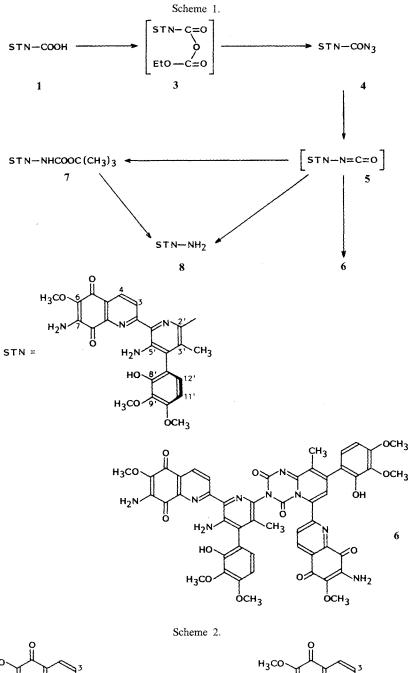
## CHEMICAL MODIFICATION OF ANTIBIOTIC STREPTONIGRIN; SYNTHESIS AND PROPERTIES OF 2'-DECARBOXY-2'-AMINOSTREPTONIGRIN (STREPTONIGRONE-2'-IMINE)

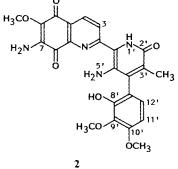
V. V. TOLSTIKOV, M. N. PREOBRAZHENSKAYA, J. BALZARINI<sup>†</sup> and E. DE CLERCO<sup>†</sup>

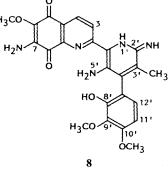
Institute of New Antibiotics of Russian Academy of Medical Sciences, Moscow 119867, Russia <sup>†</sup>Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

(Received for publication November 25, 1991)

Whereas the cytostatic properties of the antibiotic streptonigrin (1) and its amides and esters have been studied<sup>1~4</sup>, structure-activity relationships for other derivatives of 1, as well as for derivatives of antibiotic streptonigrone (2), which is a minor component of the streptonigrin complex<sup>5</sup>, remain to be investigated. In this paper we describe the synthesis of 2'-decarboxy-2'-aminostreptonigrin (8), which can be considered as an analogue of streptonigrone.


1 was converted to the mixed anhydride (3) (1 equiv ClCOOEt; 1.1 equiv Et<sub>3</sub>N; THF; 0°C; 0.5 hour), which under the action of NaN<sub>3</sub> (3 equiv H<sub>2</sub>O; 0°C; 1 hour) afforded, after extraction with EtOAc, the corresponding azide (4), (IR  $v_{max}$ (CHCl<sub>3</sub>) cm<sup>-1</sup> 2250 (N<sub>3</sub>), 1750 (C=O)), which was immediately used in the next step of conversion (see Scheme 1). All the new compounds were separated by TLC using Kieselgel 60 (Merck) plates in chloroform - acetone - methanol, 8:1:1 mixture.


Decomposition of **4** in anhydrous conditions (dry toluene, reflux for 2 hours) led *via* streptonigrin-2'-decarboxy-2'-isocyanate (**5**) to the dimer **6** (70%; MP 164~165°C; Rf 0.60; <sup>1</sup>H NMR (Varian VXR 400 instrument, 400 MHz, CDCl<sub>3</sub>)  $\delta$  8.78 (1H, d,  $J_{3,4}$ =8 Hz, 4-H), 8.77 (1H, d, 4-H), 8.32 (1H, d, 3-H), 8.27 (1H, d, 3-H), 7.05 (1H, d,  $J_{11',12'}$ =8.5 Hz, 12'-H or 11'-H), 6.99 (1H, d, 12'-H or 11'-H), 6.72 (2H, s, 8'-OH, 2-groups), 6.70 (1H, d, 11'-H or 12'-H), 6.65 (1H, d, 11'-H or 12'-H), 6.00 (4H, br s, 7'-NH<sub>2</sub>, 2-groups), 5.10 (4H, br s, 5'-NH<sub>2</sub>, 2-groups), 4.08 (3H, s, -OCH<sub>3</sub>), 4.07 (3H, s, -OCH<sub>3</sub>), 3.97 (3H, s, -OCH<sub>3</sub>), 3.95 (3H, s, -OCH<sub>3</sub>), 2.09 (3H, s,


3'-CH<sub>3</sub>), 2.04 (3H, s, 3'-CH<sub>3</sub>); CI-MS (Jeol JMS-DX 300 instrument with NH<sub>3</sub> as a reagent gas) m/z 504 ( $\frac{M}{2}$ +H, C<sub>25</sub>H<sub>22</sub>N<sub>5</sub>O<sub>7</sub>), 475 ( $\frac{M}{2}$  –CO, C<sub>24</sub>H<sub>21</sub>N<sub>5</sub>O<sub>6</sub>); EI-MS (Varian-MAT-112 spectrometer at 210~230°C ion source and 70 eV electron energy, samples being introduced by direct insertion) m/z 503.1 (( $\frac{M}{2}$ )<sup>+</sup>, C<sub>25</sub>H<sub>21</sub>N<sub>5</sub>O<sub>7</sub>). Doubling of the signals of all protons in the <sup>1</sup>H NMR spectrum of **6** demonstrates the absence of symmetry in the dimer structure (similar to pyridyl-2isocyanate dimer<sup>6</sup>).

Decomposition of 4 in boiling tert-BuOH (4 hours, evaporation, isolation by preparative TLC) gave 2'-decarboxy-2'-(tert-butyloxycarbonylamino)streptonigrin (7), amine 8 and dimer 6. Compound 7 was obtained in 40% yield (MP  $162 \sim 164^{\circ}C$  (dec); Rf 0.85; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.65 (1H, d, J<sub>3.4</sub> = 8 Hz, 4-H), 8.15 (1H, d, 3-H), 6.67 (1H, d,  $J_{11',12'} = 8.5 \text{ Hz}, 12' \text{-H or } 11' \text{-H}), 6.45 (1 \text{H}, \text{d}, 11' \text{-H})$ or 12'-H), 3.71 (3H, s, -OCH<sub>3</sub>), 3.69 (3H, s, -OCH<sub>3</sub>), 3.67 (3H, s, -OCH<sub>3</sub>), 1.92 (9H, s, O-C(CH<sub>3</sub>)<sub>3</sub>), 1.86 (3H, s, 3'-CH<sub>3</sub>)). Amine 8 was obtained in 30% yield (MP  $192 \sim 194$  °C; Rf 0.40; <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>)  $\delta$  8.77 (1H, d,  $J_{3,4}$  = 8 Hz, 4-H), 8.32 (1H, d, 3-H), 6.81 (1H, d,  $J_{11'12'} = 8.5$  Hz, 12'-H), 6.63 (1H, d, 11'-H), 5.04 (2H, br s, 5'-NH<sub>2</sub>), 4.05 (3H, s, -OCH<sub>3</sub>), 3.96 (3H, s, -OCH<sub>3</sub>), 3.93 (3H, s, -OCH<sub>3</sub>), 1.93 (3H, s, 3'-CH<sub>3</sub>); <sup>13</sup>C NMR (Varian XL 100, 100 MHz, CDCI<sub>3</sub>) δ 179.8 (C-8), 177.1 (C-5), 161.1 (C-8a), 152.6 (C-10'), 148.4 (C-2'), 147.3 (C-8'), 143.9 (C-5'), 140.3 (C-2), 137.2 (C-7), 136.9 (C-3'), 136.4 (C-9'), 132.5 (C-6), 128.3 (C-6'), 124.9 (C-4), 125.4 (C-4a), 124.3 (C-3), 121.9 (C-12'), 119.6 (C-4') 115.1 (C-7'), 103.6 (C-11'), 59.8 (-OCH<sub>3</sub>), 59.1 (-OCH<sub>3</sub>), 54.9 (-OCH<sub>3</sub>), 13.7 (3'-CH<sub>3</sub>); CI-MS m/z 477 (M,  $C_{24}H_{23}N_5O_6$ )). Dimer 6 was isolated in 10% yield. Treatment of 4 with a mixture of CF<sub>3</sub>COOH-H<sub>2</sub>O (1:5, steam bath; 1 hour) with subsequent evaporation and neutralization (1.1 equiv Et<sub>3</sub>N in CHCl<sub>3</sub>; 0°C; 0.5 hour), extraction with EtOAc and washing (5% aq NaHCO<sub>3</sub>) afforded the amine 8 in 65% yield. Amine 8 was obtained also by cleavage of 6 in  $CF_3COOH - CH_2Cl_2$  (1:1; 0°C to 20°C; 2 hours) in 80% yield. By using diphenylphosphoryl azide (DPPA)<sup>7)</sup> for the direct conversion of 1, we prepared amine 8 in 40% yield (1.5 equiv DPPA; 1.5 equiv Et<sub>3</sub>N; dioxane - tert-BuOH (5:1); 80°C; 36 hours) (see Scheme 1). Amine 8, under the action of 0.5 M HCl in MeOH, afforded the hydrochloride (9) (95%; MP 235°C (dec)).

The inhibitory effects of compound  $\mathbf{8}$ , its hydrochloride  $\mathbf{9}$  and streptonigrone  $\mathbf{2}$  in comparison







| Compound | Inhibition of tumor cell proliferation $IC_{50}^{*}$ ( $\mu$ M/ml) |                    |                      |
|----------|--------------------------------------------------------------------|--------------------|----------------------|
|          | L1210                                                              | MOLT-4F            | MT-4                 |
| 1        | $0.044 \pm 0.009$                                                  | $0.004 \pm 0.0004$ | $0.0002 \pm 0.00001$ |
| 2        | $2.57 \pm 0.28$                                                    | $2.29 \pm 0.46$    | $1.83 \pm 0.06$      |
| 8        | $2.46 \pm 0.24$                                                    | $2.29 \pm 0.03$    | $0.055 \pm 0.035$    |
| 9        | $2.91 \pm 0.08$                                                    | $2.68 \pm 0.26$    | $0.74 \pm 0.23$      |

Table 1. Inhibitory effects of streptonigrin (1), streptonigrone (2) and derivatives 8 and 9 on the proliferation of murine leukemia (L1210), human T-lymphoblast (MOLT-4F) and human T-lymphocyte (MT-4) cells.

\* 50% inhibitory concentrations, or concentrations required to inhibit cell proliferation by 50%.

with compound 1, which can be considered as 2'-imine of streptonigrone (see Scheme 2), on the proliferation of murine leukemia (L1210), human T-lymphoblast (MOLT-4F) and human T-lymphocyte (MT-4) cells are shown in the Table 1. Compounds 8 and 9 were less cytotoxic than 1, the IC<sub>50</sub> values for 2, 8 and 9 being similar. Compounds 8, 9 and 2 did not prove effective against HIV-1 or HIV-2 induced cytopathogenicity in MT-4 cells at subtoxic concentrations. The assays for measuring inhibition of tumor cell growth L1210, MOLT-4F, MT-4 and anti-HIV activity in MT-4 cells were performed as previously described<sup>8)</sup>.

## Acknowledgments

In the USSR this research was supported by Grant from the All Union Anti-Aids Programm, it was also supported in part by Grant from the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek" Project No. 7.0049.90 and by the AIDS Basic Research Programme of the European Community.

## References

- TAKE, Y.; Y. INOUYE, S. NAKAMURA, H. S. ALLAUDEEN & A. KUBO: Comparative studies of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastosis virus reverse transcriptases and cellular DNA polymerases. J. Antibiotics 42: 107~115, 1989
- TAKE, Y.; T. KUBO, E. TAKEMORI, Y. INOUYE, S. NAKAMURA, T. NISHIMURA, H. SUZUKI & H.

YAMAGUCHI: Biological properties of streptonigrin derivatives. III. *In vitro* and *in vivo* antiviral and antitumor activities. J. Antibiotics 42: 968 ~ 976, 1989

- 3) TOLSTIKOV, V. V.; N. V. KOZLOVA, I. V. YARTSEVA, Y. V. DOBRYNIN, E. A. SYNYAGINA, T. G. NIKOLAYEVA, V. E. FINKO, A. A. ARUTUNYAN, R. G. MELIK-OGANDZHANYAN & M. N. PREOBRAZHENS-KAYA: Synthesis of amides and esters of antibiotic bruneomycin (streptonigrin) and study of their cytotoxyc and antiretroviral activities. Khim. Pharm. Zhurn. 24 (2): 130~132, 1990
- TOLSTIKOV, V. V.; N. V. KOZLOVA, I. V. YARTSEVA & M. N. PREOBRAZHENSKAYA: "Chimeric" antibiotics, daunorubicin and its analogues N-acylated with bruneomycin (streptonigrin). Bioorg. Khim. 15: 277~280, 1989
- HERLT, A. J.; R. W. RICKARDS & J.-P. WU: The structure of streptonigrone, and a comment on the biosynthesis of the streptonigrin antibiotics. J. Antibiotics 38: 516~518, 1985
- 6) L'ABBE, G.; L. VAN MEERVELT, P. BREMS & L. P. DECLERCQ: Crystal structure of 3-tert-butylimino-2,3-dihydroimidazo(1.2-a)pyridin-2-one. Bull. Soc. Chim. Belg. 96: 751~756, 1987
- SHIOIRI, T.; K. NINOMIYA & S. YAMADA: Diphenylphosphoryl azide. A new convenient reagent for a modified curtius reaction and for the peptide synthesis. J. Am. Chem. Soc. 94: 6203 ~ 6205, 1972
- 8) BALZARINI, J.; M. BABA, R. PAUWELS, P. HERDEWIJN, G. S. WARD, M. J. ROBINS & E. DE CLERCQ: Potent and selective activity of 3'-azido-2,6-diaminopurine-2',3'-dideoxyriboside. 3'-fluoro-2,6-diaminopurine-2',3'-dideoxyriboside, and 3'-fluoro-2',3'-dideoxyguanosine against human immunodeficiency virus. Mol. Pharmacol. 33: 243~249, 1988